countable paracompactness - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

countable paracompactness - перевод на русский

TOPOLOGICAL SPACE IN WHICH EVERY OPEN COVER HAS AN OPEN REFINEMENT THAT IS LOCALLY FINITE
Paracompact; Paracompactness; Fully normal space; Fully T4 space; Fully normal Hausdorff space; Paracompact Hausdorff space; Paracompact topological space; Paracompactness criteria; Countably paracompact; Hereditarily paracompact space; Countably paracompact space; Subordinate partition of unity; Paracompact manifold; Countable paracompactness

countable paracompactness         

математика

счётная паракомпактность

countably paracompact         

математика

счётно паракомпактный

countably paracompact space         
счетно паракомпактное пространство

Определение

countable
<mathematics> A term describing a set which is isomorphic to a subet of the natural numbers. A countable set has "countably many" elements. If the isomorphism is stated explicitly then the set is called "a counted set" or "an enumeration". Examples of countable sets are any finite set, the {natural numbers}, integers, and rational numbers. The {real numbers} and complex numbers are not [proof?]. (1999-08-29)

Википедия

Paracompact space

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact.

The notion of paracompact space is also studied in pointless topology, where it is more well-behaved. For example, the product of any number of paracompact locales is a paracompact locale, but the product of two paracompact spaces may not be paracompact. Compare this to Tychonoff's theorem, which states that the product of any collection of compact topological spaces is compact. However, the product of a paracompact space and a compact space is always paracompact.

Every metric space is paracompact. A topological space is metrizable if and only if it is a paracompact and locally metrizable Hausdorff space.

Как переводится countable paracompactness на Русский язык